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1 Introduction

Recently, the direct-strike lighting environment for the stockpile-to-target se-
quence was updated [1]. In [1], the severe (1%) lightning current waveforms
for first and subsequent return strokes are defined based on Heidler’s waveform.
This report presents numerical calculations of the spectra of those 1% lightning
current waveforms and their first derivatives. First, the 1% lightning current
models are repeated here for convenience. Then, the numerical method for cal-
culating the spectra is presented and tested. The test uses a double-exponential
waveform and its first derivative, which we fit to the previous 1% direct-strike
lighting environment from [2]. Finally, the resulting spectra are given and are
compared with those of the double-exponential waveform and its first derivative.



2 1% Lightning Current and Its First Derivative

The updated waveform1 of the lighting current is [1]
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The updated waveform of the first derivative of the lightning current is [1]
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The parameter values used in Eqns. 1 and 3 for median (50%) negative first
and subsequent strokes are given in Tables 1 and 2, respectively. In order to
obtain 1% lighting currents and first derivatives, the resulting 50% waveforms
are multiplied by the values in Table 3. We use the scaling factors in Table 3
instead of multiplying by five as suggested in [1] in order to better match the
1% peak current and peak rise rate from [1]. Note that for the 1% first return
stroke peak current we use 200 kA instead of 150 kA to roughly approximate a
frequency-weighted average of the negative and positive peak currents. Figures
1 and 2 show overview and expanded plots of the 1% first return stroke I(t)
and dI(t)/dt, respectively. Figures 3 and 4 display I(t) and dI(t)/dt, respec-
tively, for the 1% subsequent return stroke. We wish to compute the spectra of
these functions. (Figures 1, 2, 3, and 4 also include the 1% double-exponential
waveforms for comparison. See Section 4 for descriptions of the waveforms.)

3 Numerical Method for Calculating the Spec-

tra

Calculating the spectra of I(t) and dI(t)/dt is performed numerically using the
Fast Fourier Transform (FFT), rather than analytically. Let the FFT of the
length N discrete-time signal x[n] be defined2 as [4, 5]

1For numerical reasons we use an alternate but equivalent expression for the fraction in

Eqn. 1: (t/τ1k)nk
/
1+

(
t/τ1k

)nk = 1/
1+

(
t/τ1k

)−nk

2Actually, Eqn. 4 is the definition of the Discrete Fourier Transform (DFT), and the FFT
is a fast algorithm for computing the DFT [3, 4, 5]. We call Eqn. 4 the FFT for convenience.
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Table 1: Parameter values used in Eqn. 1 for median (50%) negative first return
strokes [1].

k I0k (kA) nk τ1k (µs) τ2k (µs)
1 3 2 15 30
2 3 3 15 30
3 3 9 20 30
4 3 11 20 30
5 25 150 10 23
6 15 2 30 250

Table 2: Parameter values used in Eqn. 1 for median (50%) negative subsequent
return strokes [1].

k I0k (kA) nk τ1k (µs) τ2k (µs)
1 15 5 0.2 50

FFT{x[n]} = X[k] =
N−1∑

n=0

x[n]e−j2πk n
N ; k = 0, ..., N − 1 (4)

where j denotes the square root of negative one. Suppose we wish to compute
the spectrum of a continuous-time signal x(t). One method for approximating
the spectrum is as follows [4, 5, 6].3 First, we sample x(t) at fs samples per
second to produce the length N array x[n]:

x[n] = x(n/fs); n = 0, ..., N − 1 (5)

Then, the continuous-time Fourier transform of x(t)

F{x(t)} =
∫ +∞

−∞
x(t)e−j2πftdt (6)

can be approximated as
3Another more accurate method is in [7].

Table 3: Scaling values for severe (1%) return strokes. Multiply Eqns. 1 and
3, with parameters from Tables 1 and 2, by the scaling values to yield the 1%
waveforms.

1% lightning cases covered by scaling values I(t) dI(t)/dt
Negative and positive first return stroke 5.98 4.18
Negative subsequent return stroke 3.33 4.0505
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Figure 1: 1% first return stroke current (blue) and 1% double-exponential cur-
rent (red dashed). The 1% first return stroke current is computed by multiplying
Eqn. 1, with parameters from Table 1, by the scaling factor in Table 3. The
plot on the right is an expanded view of the one on the left.

F{x(t)} ≈ ∆tFFT{x[n]} = FFT{x[n]}/fs (7)

where F{x(t)} denotes the Fourier transform of x(t). FFT{x[n]} represents
the FFT of x[n] as defined in Eqn. 4, and

∆t = 1/fs (8)

is the sampling interval.
Since x[n] is real, FFT{x[n]} exhibits complex conjugate symmetry [3, 6, 8,

9]. Thus, we take the subset k = 0, ..., N ′− 1 of FFT{x[n]}, with N ′ given as

N ′ =
{

N/2 if N is even
N/2 − 1/2 if N is odd (9)

which corresponds to the positive frequencies k∆f for k = 0, ..., N ′− 1, with

∆f =
1

N∆t
=

fs

N
(10)

Interpolation to a finer frequency sampling can be achieved by appending
zeros to x[n] to a length Nzp [4, 5]. The new frequency spacing is then ∆fzp =
fs/Nzp, and Eqns. 7 and 9 are adjusted as follows:

F{x(t)} ≈ ∆tFFT{x[n]zp} = FFT{x[n]zp}/fs (11)

N ′
zp =

{
Nzp/2 if Nzp is even

Nzp/2 − 1/2 if Nzp is odd (12)

The frequencies corresponding to the samples in Eqn. 12 are k∆fzp for k =
0, ..., N ′

zp−1. Note that zero padding results in interpolation to a finer frequency
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Figure 2: 1% first return stroke current first derivative (blue) and 1% double-
exponential current first derivative (red dashed). The 1% first return stroke
current first derivative is computed by multiplying Eqn. 3, with parameters
from Table 1, by the scaling factor in Table 3. The plot on the right is an
expanded view of the one on the left, with the 1% double-exponential current
first derivative shifted to the right by 10 µs.

sampling without an actual increase in frequency resolution; a longer record of
non-zero samples of x[n] is required to truly increase the frequency resolution
[5].

For a well-behaved x(t), if x(t) is also approximately time- and band-limited
for the sampling defined in Eqn. 5, then Eqn. 7 is a reasonable approximation
of the Fourier transform of x(t) [4, 5, 6].4 In order to satisfy the time-limited
criterion we must sample I(t) and dI(t)/dt long enough so that they are ap-
proximately zero, thus minimizing ripple on the spectrum [5, 6].5 The ripple is
a result of truncation, and if x(t) were truly time-limited, the only errors would
be due to aliasing [6]. The band-limited criterion requires us to sample at a
large enough fs so that aliasing is below our desired level of accuracy [6] for the
frequency range in which we are interested. According to [6] the “computation
of the Fourier transform only requires that we exercise care in the choice of
[1/fs] and N and interpret the results correctly.”

We can approach satisfying the criteria of being approximately time- and
band-limited by performing a simple convergence study for different values of
fs and T , where T = N/fs. We use this approach in Sections 4 and 5 to obtain
converged spectra.

4For more detailed discussions on the pitfalls of using the FFT to approximate the Fourier
transform, see Refs. [4, 5, 6].

5We could also use a one-sided tapered window, with a step function at the beginning and
the taper at the end, but that would bias the spectrum.
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Figure 3: 1% subsequent return stroke current (green) and 1% double-
exponential current (red dashed). The 1% subsequent return stroke current
is computed by multiplying Eqn. 1, with parameters from Table 1, by the scal-
ing factor in Table 3. The plot on the right is an expanded view of the one on
the left.

4 Test Using 1% Double-Exponential Waveform

Before we apply the above method to approximate the spectra of the 1% light-
ning current models and their derivatives from [1], we first test the method using
the previous 1% lightning current environment parameters [2]. The following
double-exponential return stroke current model approximates the peak current
(200 kA), peak rise rate (400 kA/µs), total charge transferred (29.8 C), and
action integral (3×106 A2 s) for the previous 1% lightning current in [2]:

I(t) = I0

[
e−t/τfwhm − e−t/τrise

]
(13)

where τfwhm ≈ 146.2 µs is the full-width half-maximum time, τrise ≈ 0.51 µs
is the rise time, and I0 ≈ 205 kA. The first derivative is

dI(t)
dt

=
I0

τfwhmτrise

[
τfwhme−t/τrise − τrisee

−t/τfwhm

]
(14)

The double-exponential current model is especially useful for testing since
its Fourier transform can be determined analytically [10]:

F{I(t)} = I(f) =
I0(τfwhm − τrise)

τfwhmτrise(j2πf + 1
τfwhm

)(j2πf + 1
τrise

)
(15)

The Fourier transform of the first derivative of the double-exponential lightning
current can also be written in closed form:

F{dI(t)/dt} = I′(f) = j2πfI(f) =
j2πfI0(τfwhm − τrise)

τfwhmτrise(j2πf + 1
τfwhm

)(j2πf + 1
τrise

)
(16)
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Figure 4: 1% subsequent return stroke current first derivative (blue) and 1%
double-exponential current first derivative (red dashed). The 1% subsequent
return stroke current first derivative is computed by multiplying Eqn. 3, with
parameters from Table 1, by the scaling factor in Table 3. The plot on the right
is an expanded view of the one on the left.

See Figures 1, 2, 3, and 4 in Section 2 for plots of the double-exponential func-
tions.

Our goal is to achieve an approximation within ±0.5 dB in magnitude and
±0.5◦ in phase over the frequency range from 0 to 10 MHz.6 First, we plot
the analytical transform (Eqn. 15) on the same plot with the approximation
(Eqn. 7) with a reasonable T and four fs values. In this case we start with
T = 1.25 ms and use fs = 20, 40, 80, 160 MHz. Figure 5 shows the convergence
of the magnitude and the phase separately. Figure 6 is an expanded view of Fig.
5 showing that the magnitude converges to the analytical value from above. The
phase converges to the analytical value from below. Note the ripples, due to
truncation, in both magnitude and phase. The zero-frequency (DC) magnitude
values are only 0.0018 dB below the analytical value. The phase values are
consistent with the fact that the DC value is always real. Increasing T to
T = 2 ms reduces the ripples further (Figs. 7 and 8). The error plot in Fig.
9 provides a better depiction of the accuracy of the approximate transform
for T = 2 ms. The approximate transform is now clearly within ±0.5 dB in
magnitude and ±0.5◦ in phase, even for fs = 80 MHz.

6The magnitude and phase goals that we use here and in the rest of this report are arbitrary
and are selected to be reasonably small and achievable.
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Figure 5: Convergence of the magnitude and phase of the approximate transform
of the 1% double-exponential lightning current for T = 1.25 ms. The black
dashed line is the analytical transform. The vertical solid black line marks
10 MHz, which is the highest frequency of interest in this test case.
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Figure 6: Expanded view of Fig. 5 around 10 MHz.
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Figure 7: Convergence of the magnitude and phase of the approximate transform
of the 1% double-exponential lightning current for T = 2 ms. The black dashed
line is the analytical transform. The vertical solid black line marks 10 MHz,
which is the highest frequency of interest in this test case.
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Figure 9: Errors in the magnitude and phase of the approximate (approx) trans-
form of the 1% double-exponential lightning current for T = 2 ms relative to
the analytical (exact) transform. The vertical solid black line marks 10 MHz,
which is the highest frequency of interest in this test case. The horizontal black
lines mark the ±0.5 dB and ±0.5◦ limits. The color scheme for the sampling
frequencies is the same as in Figs. 5, 6, 7, and 8.

Next, for the first derivative we plot the analytical transform (Eqn. 16)
on the same plot as the approximation (Eqn. 7) with a reasonable T and six
fs values: T = 0.5 ms and fs = 40, 80, 160, 320, 640 MHz. Figure 10 shows
the convergence of the magnitude and the phase separately. Figure 11 is an
expanded view of Fig. 10. Note that the magnitude at 10 MHz is within the
range of our goal; however, the phase is about 3◦ off the analytical value at
10 MHz even for the 640 MHz case. Better values can be obtained for the first
derivative by approximating the spectrum of the current and then multiplying
by j2πf . Using this approach with T = 2 ms and fs = 20, 40, 80, 160 MHz we
see clear convergence (Figs. 12 and 13) with the same convergence properties
as with the current. The error plot in Fig. 14 displays the accuracy of the
approximate transform. As with the current, the approximate transform of the
first derivative is now clearly within ±0.5 dB in magnitude and ±0.5◦ in phase,
even for fs = 80 MHz.
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Figure 14: Errors in the magnitude and phase of the approximate (approx)
transform of the first derivative of the 1% double-exponential lightning current
for T = 2 ms relative to the analytical (exact) transform. The vertical solid
black line marks 10 MHz, which is the highest frequency of interest in this test
case. The horizontal black lines mark the ±0.5 dB and ±0.5◦ limits. The color
scheme for the sampling frequencies is the same as in Figs. 12 and 13.

5 Spectra of the 1% Lightning Current Wave-

forms and First Derivatives

We now apply the methods listed in Sections 3 and 4 to numerically approxi-
mate the Fourier transforms of I(t) and dI(t)/dt for the Heidler 1% first and
subsequent return stroke cases. First, we approximate the Fourier transform of
I(t) for the Heidler 1% first return stroke current. Our initial sampling dura-
tion is T = 2 ms, with fs = 20, 40, 80, 160 MHz. The results are shown in Fig.
15. The wrapped phase is taken after multiplying by exp(j2πf · 10µs), which
corresponds to a time advance of 10 µs. Note the strange ripples just below
10 MHz. Increasing T pushes this anomaly past the 10 MHz mark. Figures 16
and 17 are plots of approximations over a range of T (2, 4, 6, 8 ms) with a fixed
fs = 160 MHz. As in Fig. 15, the wrapped phase is taken after multiplying by
exp(j2πf · 10µs). After T = 6 ms the anomaly decreases to a position just past
10 MHz. Up to 10 MHz the magnitude is within ±0.5 dB. However, the phase
is within ±0.5◦ up to only about 9 MHz. At 10 MHz the phase is within about
±1.5◦. The observed behavior could indicate numerical issues, so we do not
increase T further. Perhaps higher-order approximations of the Fourier trans-
form, such as in [7], and/or more accurate numerical evaluation of the Heidler
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lightning current expression could remove or validate the anomaly. Figures 18
and 19 display an additional convergence study using fs = 20, 40, 80, 160 MHz
with T fixed at 6 ms. The results indicate that parameter values fs = 40 MHz
and T = 6 ms are sufficient for the Heidler first return stroke with a revised
phase goal of about ±1.5◦.

The Heidler 1% subsequent return stroke is much more tractable than the
first return stroke. First, we perform a convergence study for T = 6 ms and
fs = 20, 40, 80, 160 MHz. See Figs. 20 and 21. The wrapped phase is taken after
multiplying by exp(j2πf ·0.1991µs) (a 0.1991 µs time advance). The parameter
value fs = 40 MHz yields a spectrum within ±0.5 dB in magnitude and ±0.5◦ in
phase. A further convergence study with fs = 40 MHz and T = 0.2, 0.4, 0.8,1 ms
indicates that the same level of convergence can be obtained with fs = 40 MHz
and T = 0.8 ms. Refer to Figs. 22 and 23.

We obtain the first derivatives for the first and subsequent Heidler 1% return
strokes by multiplying the return stroke currents by j2πf . We use T = 6 ms
for the first, T = 0.8 ms for the subsequent, and fs = 40 MHz for both. Figures
24 and 25 display the results. The wrapped phase is taken after multiplying by
exp(j2πf · 10µs) or exp(j2πf · 0.1991µs), respectively.
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Figure 15: Convergence of the magnitude and phase of the approximate trans-
form of the 1% Heidler first return stroke current for T = 2 ms. The wrapped
phase is taken after multiplying by exp(j2πf · 10µs), which corresponds to a
time advance of 10 µs. The vertical solid black line marks 10 MHz, which is the
highest frequency of interest.
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Figure 16: Convergence of the magnitude and phase of the approximate trans-
form of the 1% Heidler first return stroke current for fs = 160 MHz. The
wrapped phase is taken after multiplying by exp(j2πf · 10µs), which corre-
sponds to a time advance of 10 µs. The vertical solid black line marks 10 MHz,
which is the highest frequency of interest.
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Figure 17: Expanded view of Fig. 16 around 10 MHz.
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Figure 18: Convergence of the magnitude and phase of the approximate trans-
form of the 1% Heidler first return stroke current for T = 6 ms. The wrapped
phase is taken after multiplying by exp(j2πf · 10µs), which corresponds to a
time advance of 10 µs. The vertical solid black line marks 10 MHz, which is the
highest frequency of interest.
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Figure 19: Expanded view of Fig. 18 around 10 MHz.
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Figure 20: Convergence of the magnitude and phase of the approximate trans-
form of the 1% Heidler subsequent return stroke current for T = 6 ms. The
wrapped phase is taken after multiplying by exp(j2πf · 0.1991µs) (a 0.1991 µs
time advance) is plotted. The vertical solid black line marks 10 MHz, which is
the highest frequency of interest.
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Figure 21: Expanded view of Fig. 20 around 10 MHz.
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Figure 22: Convergence of the magnitude and phase of the approximate trans-
form of the 1% Heidler subsequent return stroke current for fs = 40 MHz. The
wrapped phase is taken after multiplying by exp(j2πf · 0.1991µs) (a 0.1991 µs
time advance) is plotted. The vertical solid black line marks 10 MHz, which is
the highest frequency of interest.
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Figure 23: Expanded view of Fig. 22 around 10 MHz.
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Figure 24: Magnitude and phase of the approximate transform of the first deriva-
tive of the 1% Heidler first return stroke current for fs = 40 MHz and T = 6 ms.
The wrapped phase is taken after multiplying by exp(j2πf · 10µs), which cor-
responds to a time advance of 10 µs.

Finally, we plot the spectra of the 1% Heidler return stroke currents and
first derivatives of the currents with the analytical spectra of the 1% double-
exponential current and first derivative. Figures 26 and 27 display the magni-
tude and phase of the 1% Heidler return stroke currents and the 1% double-
exponential current. The unwrapped phase of the 1% Heidler first and subse-
quent return stroke currents is taken after multiplying by exp(j2πf · 10µs) or
exp(j2πf · 0.1991µs), respectively. Figures 28 and 29 display the magnitude
and phase of the first derivative of the 1% Heidler return stroke currents and of
the 1% double-exponential current. Again, the unwrapped phase of the deriva-
tive of the 1% Heidler first and subsequent return stroke currents is taken after
multiplying by exp(j2πf · 10µs) or exp(j2πf · 0.1991µs), respectively. Table 4
lists the parameters values for fs and T used in Figs. 26, 27, 28, 29, and 30
for the 1% Heidler cases. The analytical transforms, Eqns. 15 and 16, are used
for the 1% double-exponential current and derivative. A further comparison of
the 1% double-exponential and Heidler cases is in Fig. 30. Figure 30 displays
the ratio of the magnitudes of the spectra of the Heidler and double-exponential
currents. The ratio of the magnitudes of the spectra of the corresponding first
derivatives is identical to Fig. 30, since the 2πf terms in the numerator and the
denominator cancel.
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Figure 25: Magnitude and phase of the approximate transform of the first deriva-
tive of the 1% Heidler subsequent return stroke current for fs = 40 MHz and T =
0.8 ms. The wrapped phase is taken after multiplying by exp(j2πf · 0.1991µs)
(a 0.1991 µs time advance) is plotted.

Table 4: Parameter values for approximate transforms in Figs. 26, 27, 28, 29,
and 30.

fs (MHz) T (ms)
1% Heidler first return
stroke current and derivative 40 6
1% Heidler subsequent return
stroke current and derivative 40 0.8
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Figure 26: Magnitude of the spectra of the 1% Heidler return stroke currents,
with fs and T from Table 4, and the analytical spectrum of the 1% double-
exponential current.
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Figure 27: Unwrapped phase of the spectra of the 1% Heidler return stroke
currents, with fs and T from Table 4, and the analytical spectrum of the 1%
double-exponential current. The unwrapped phase of the spectra of the 1%
Heidler first and subsequent return stroke currents is taken after multiplying by
exp(j2πf · 10µs) or exp(j2πf · 0.1991µs), respectively.
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Figure 28: Magnitude of the spectra of the derivative of the 1% Heidler return
stroke currents, with fs and T from Table 4, and the analytical spectrum of the
1% double-exponential current.
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Figure 29: Unwrapped phase of the spectra of the derivative of the 1% Heidler
return stroke currents, with fs and T from Table 4, and the analytical spectrum
of the 1% double-exponential current. The unwrapped phase of the spectra
of the 1% Heidler first and subsequent return stroke currents is taken after
multiplying by exp(j2πf · 10µs) or exp(j2πf · 0.1991µs), respectively.
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Figure 30: Ratio of the magnitudes of the spectra of the Heidler currents, with
fs and T from Table 4, and the analytical spectrum of the double-exponential
current. The ratio of the magnitudes of the spectra of the corresponding first
derivatives is identical to Fig. 30, since the 2πf terms in the numerator and the
denominator cancel.
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